Closure of the Laplace-Beltrami Operator on 2D Almost-Riemannian Manifolds and Semi-Fredholm Properties of Differential Operators on Lie Manifolds

نویسندگان

چکیده

Abstract The problem of determining the domain closure Laplace-Beltrami operator on a 2D almost-Riemannian manifold is considered. Using tools from theory Lie groupoids natural domains perturbations are found. main novelty that presented method allows us to treat geometries with tangency points. This kind singularity difficult since those points do not have tubular neighbourhood compatible metric.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Laplace-Beltrami-Operator on Riemannian Manifolds

This report mainly illustrates a way to compute the Laplace-Beltrami-Operator on a Riemannian Manifold and gives information to why and where it is used in the Analysis of 3D Shapes. After a brief introduction, an overview over the necessary properties of manifolds for calculating the Laplacian is given. Furthermore the two operators needed for defining the Laplace-Beltrami-Operator the gradien...

متن کامل

Monotonicity Theorems for Laplace Beltrami Operator on Riemannian Manifolds

Abstract. For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of these results for the LaplaceBeltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be e...

متن کامل

Uniform Estimates of the Resolvent of the Laplace–Beltrami Operator on Infinite Volume Riemannian Manifolds with Cusps.II

We prove uniform weighted high frequency estimates for the resolvent of the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds under some natural assumptions on the metric on the ends of the manifold. This extends previous results by Burq [3] and Vodev [8].

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2023

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-022-01832-z